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Abstract— A simple yet effective semi-supervised method is
proposed in this paper based on consistency regularization
for crowd counting, and a hybrid perturbation strategy is
used to generate strong, diverse perturbations, and enhance
unlabeled images information mining. The conventional CNN-
based counting methods are sensitive to texture perturbation
and imperceptible noises raised by adversarial attack, there-
fore, the hybrid strategy is proposed to combine a spatial
texture transformation and an adversarial perturbation module
to perturb the unlabeled data in the semantic and non-semantic
spaces, respectively. Moreover, a cross-distribution normalization
technique is introduced to address the model optimization failure
caused by BN layer in the strong perturbation, and to stabilize the
optimization of the learning model. Extensive experiments have
been conducted on the datasets of ShanghaiTech, UCF-QNRF,
NWPU-Crowd, and JHU-Crowd++. The results demonstrate
that the proposed semi-supervised counting method performs
better over the state-of-the-art methods, and it shows better
robustness to various perturbations.

Index Terms— Crowd counting, semi-supervised learning,
hybrid perturbation strategy, semantic and non-semantic per-
turbation, cross-distribution normalization.

I. INTRODUCTION

CROWD counting aims to estimate people number and
crowd density distribution in an image, which is gener-

ally formulated as the estimation of crowd density map [1].
Its ground truth is obtained by performing Gaussian ker-
nel convolution on head location. The supervised learning
methods [2], [3], [4], [5], [6] are frequently used in crowd
counting, but it is time-consuming to manually label the people
locations in images, especially for the images with thousands
of people. Besides, we observe that most of the existing
models work well only on the test dataset similar to training
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dataset. However, a real scene of varying scale, occlusion,
nonuniform distribution and background clutter, may be quite
different from training dataset. That is to say, new images
need to be added and labeled manually when a model is
used for new scenes. However, the labeling cost limits its
application. It is necessary to reduce the tedious annotation
work and to improve the efficiency of learning model with
limited data. To this end, the synthetic data were used to train a
counting model in [7]. However, the distribution shift between
the synthetic and real data degrades the model performance
in the real crowd scene. Therefore, the semi-supervised crowd
counting (SSCC) methods [8], [9], [10], [11], [12], [13] utilize
a large number of unlabeled data to train counting model,
and surrogate tasks are introduced to leverage the insightful
information of unlabeled data.

Semi-supervised learning (SSL) methods [14], [15] have
been proposed to learn a model from unlabeled data under
smoothness assumption, cluster assumption and manifold
assumption. Among them, the consistency regularization based
SSL methods have shown promising results in image classifi-
cation [16], [17], [18] and semantic segmentation [19], [20].
They force a model to produce consistent predictions for the
different augmented views of same input, so that the model
can learn more generalized features from unlabeled data and
not to overfit the limited labeled data. The density-based crowd
counting is a pixel-level regression task, and is suitable for the
consistency-based SSL framework under smoothness assump-
tion. We tested the consistency-based SSL methods [16], [17],
[18] to SSCC task, but obtained poor performance. Details
will be presented in Section V. The main reason is that the
data augmentations utilized in MT [16], VAT [17], UDA [18]
are inadequate and unsuitable for the crowd counting task,
but we know in [21], [22], and [23] that high-quality data
augmentation is able to improve the performance of SSL.
Therefore, a suitable perturbation strategy for SSCC will be
studied in this paper.

Intuitively, unlabeled data can be perturbed by strong data
augmentations of fully supervised learning [24], [25], [26],
[27], [28]. However, these augmentations are not suitable
perturbations for SSCC, because they are designed for image
classification tasks and [26], [27] requires high computational
cost. If prior knowledge about perturbations in the counting
model is available, we can design a more efficient pertur-
bation strategy for SSCC. This strategy can generate strong
perturbation and reduce the computational costs, because it
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removes augmentations in the combined transformations [26],
[27], [28] that are irrelevant to crowd counting. An effective
perturbation should produce a significant consistency loss on
unlabeled data. To acquire prior knowledge of crowd counting,
a simple yet effective way is to analyze the robustness of the
counting model against various perturbations. By doing this,
we can know the perturbations to which the counting model
is more vulnerable.

In this paper, the robustness analysis of the counting model
is done with semantic and non-semantic perturbations. Their
discrimination is to see whether their visual semantics are
comprehensible. More details will be discussed in Section III,
but we present the obtained prior knowledge of crowd counting
in the following. 1) Counting model is sensitive to texture
transformation in the crowd area and relatively robust to
geometric transformation. 2) Counting model is sensitive
to adversarial perturbations in the non-semantic space. This
explains why we perturb the unlabeled crowd images in
the semantic and non-semantic spaces, and the semantic
perturbations are obtained by texture transformation while
the non-semantic perturbations are generated by adversarial
perturbation. Meanwhile, we observed that when semantic
perturbations are too strong, counting model is difficult to
converge due to Batch Normalization (BN) layer [29]. In the
SSL, a mini-batch comprises labeled and unlabeled data.
Perturbing unlabeled data may lead to a distinct sample
distribution compared to labeled data, resulting in a mixture
of distributions within the mini-batch. However, standard
BN assumes that the samples in a batch follow the same
data distribution. Furthermore, the inappropriate parameter
updating mechanism during the training of teacher-student
architecture [16], is prone to cause a mismatch between the
BN statistics and the model weights.

Consequently, a novel hybrid perturbation strategy is pro-
posed here with a cross-distributions normalization technique.
It improves the learning performance of the counting model
under a semi-supervised setting. Specifically, the hybrid per-
turbation strategy consists of spatial texture transformation
(STT) for semantic perturbations (SP) and adversarial per-
turbation for non-semantic perturbations (NSP). STT draws
inspiration from the first result 1) and performs strong texture
transformation for the crowd foreground region and conflict
texture transfer (CTT) for the background region, respectively.
To reduce computation load, the texture transformation of the
crowd foreground area is restricted to color jitter. Conflict
texture information in CTT is added into the background
region via a mixup-based technique. It can generate strong
enough perturbation for the background. To promote pertur-
bation diversity, we extend the perturbation space from the
semantic to non-semantic space, where an unlabeled image is
perturbed by adversarial perturbation. It iteratively explores
incomprehensible noises within the ε-ball centered on an
unlabeled image. These noises maximize the consistency loss
between the unlabeled image and its perturbed version. In each
iteration, the direction of noises varies, compensating for
semantic perturbations that typically follow the same direction
of data distribution [21]. Furthermore, a cross-distribution
normalization (CDN) method is presented to address model

optimization failure caused by the BN layer in the strong
perturbation.

The contributions of this paper are summarized below.
• A new perspective to explore the prior knowledge of

crowd counting is provided by studying the model robust-
ness to various perturbations. With the prior of which
perturbations the counting model is sensitive to, we can
design more effective perturbations for SSCC.

• A hybrid perturbation strategy is proposed for SSCC
under the consistency regularization framework. Semantic
and non-semantic perturbations are put into unlabeled
data with spatial texture transformation and adversarial
perturbation.

• A cross-distribution normalization technique is intro-
duced to the counting framework to address the model
optimization failure caused by BN layer in the strong
perturbation, and to stabilize the training of SSCC as well.

• The proposed method achieves leading performance on
four crowd counting datasets and is more robust to various
perturbations than other counting methods.

II. RELATED WORKS

The supervised methods have been used in crowd counting
and achieved amazing performance on labeled datasets, while
the semi-supervised crowd counting method is rarely investi-
gated, particularly to the limited labeled datasets.

A. Fully Supervised Crowd Counting

Supervised methods have been proposed to the challenging
issues of crowd counting. For example, [2], [30], [31], [32],
[33], [34] focus on the various scale of people or head in
images. To extract the multi-scale features, multi-columns
networks are introduced in [2], [31], and [35]. However, multi-
columns networks with bloated structures are prone to generate
redundant information. Hence, the scale-aware modules with
different receptive fields are used to improve the counting
model performance [3], [30], [33]. Background clutter is also
a challenging issue in crowd counting. To attend the useful
information in the crowd rather than the background, attention
mechanism is frequently used in the counting network [34],
[36]. These methods have achieved good results on labeled
dataset, but the cost of annotation limits their applications in
the real scenes.

B. Semi-Supervised Crowd Counting

Semi-supervised learning has recently attracted a lot of
attention. With limited labeled data, semi-supervised learning
was used for crowd counting [8], [10], [11], [13], [37]. For
example, Liu et al. [10] introduced self-supervised learning
to obtain a strong feature extractor from unlabeled data
by solving the ranking of unlabeled data, improving the
performance of SSCC. Sindagi et al. [11] proposed a Gaus-
sian process-based iterative learning mechanism to estimate
the pseudo-ground truth for unlabeled data, and then used
the supervised information to train the counting network.
Liu et al. [8] designed a novel self-training strategy to improve
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the performance of SSCC by using the relationship of binary
segmentation tasks. The noises in pseudo density maps may
cause model degradation. Thus, Meng et al. [9] proposed a
spatial uncertainty-aware teacher-student framework to esti-
mate the spatial uncertainty maps with regularized surrogate
tasks, alleviating the negative effect of inaccurate pseudo
targets. Also, Zhu et al. [13] generated credible pseudo density
maps by leveraging the correlation of multi-tasks, including
density regression, binary segmentation, and confidence pre-
diction. Previous methods mainly focus on how to construct
auxiliary tasks and reduce the negative impact of noises in
pseudo targets. However, their performance is not superior
to fully supervised methods. Differently, we design a strong
and diverse perturbation strategy to improve SSCC under the
consistency-based SSL framework. Our method shows better
performance on various crowd counting datasets.

C. Perturbation in Consistency-Based SSL

Perturbation is important in consistency-based SSL. Since
the proposed HPS is performed on input images, we only
discuss similar works. Early work [16] used additive Gaussian
noises and simple image transformations such as flip and
rotation to augment unlabeled data, and only obtained sub-
optimal performance. The works [38], [39], [40] found that
advanced data augmentation is useful for SSL. Mixmatch [38]
employed the Mixup [24] to mix the images and their labels,
and to improve the SSL. EnAET [22] proposed an AutoEn-
coding Transformation framework to learn a strong encoder
under the ensemble of spatial and non-spatial transformations
in a self-supervised manner. The learned discriminative feature
representation can improve the performance of Mixmatch [38].
UDA [40] used a strong augmentation Randaugment [28] to
perturb unlabeled data, obtaining a large performance improve-
ment. During the same period, ReMixmatch [39] designed a
strong augmentation CTAugment and an augmentation anchor-
ing strategy to further improve SSL. FixMatch [41] used
the combination of RandAugment [28], CTAugment [39] and
Cutout [42] to apply aggressive perturbations to unlabeled
data, and achieved excellent performance. In addition, the
latest work CLSA [23] discussed the role of stronger augmen-
tation in representation learning. The stronger augmentation is
constructed by randomly combining 14 image transformations
with random strengths. The above methods generate strong
and diverse perturbations by combining as many image trans-
formations as possible. Furthermore, the idea of adversarial
training [43], [44] has been integrated into consistency-based
SSL. The training of SSL is formulated as a min-max
optimization. Miyato et al. [17] designed virtual adversarial
training (VAT) for SSL, which used adversarial noises to
perturb unlabeled data and minimized KL divergence between
the output distributions of original data and perturbed data.
However, VAT is sensitive to hyper-parameters and difficult to
converge in SSCC. The reason may be that the optimization
algorithm in VAT is not suitable and thus influences the gen-
eration of adversarial noise. Overall, the above perturbations
are designed for image classification, and they are not suitable
for SSCC due to differences in task data distributions. Hence,

Fig. 1. The working mechanism of perturbation in SSL. (a) shows how
perturbation brings the decision boundary closer to the true boundary for a
binary classification task. (b) compares the difference between SP and NSP
during SSL training.

the hybrid perturbation strategy (HPS) is designed for SSCC
based on the prior knowledge of the counting model. HPS
produces strong and diverse perturbations in the semantic and
non-semantic spaces. To our knowledge, we are the first to
design a dedicated strong perturbation strategy to improve the
performance of SSCC.

III. MOTIVATION

The objective of consistency-based SSL is to minimize the
following loss:

L = Ls(X l , Y l)+ λuLu(T1(Xu), T2(Xu)), (1)

where Ls denotes the supervised loss on labeled data Dl =

{X l
i , Y l

i }
|Dl |
i=1 . T1, T2 are two transformations on a perturbation

set. Lu is the consistency loss of the model predictions for
the two transformations of unlabeled data Du = {Xu

i }
|Du |
i=1 . If

T1 and T2 are close to each other and weak, the perturbed
images are similar, leading to a small Lu , and the unlabeled
data Du may not be fully exploited. Fig. 1 (a) illustrates
how a perturbation contributes to the consistency-based SSL.
It can be seen that an effective perturbation must move
a sample from one side of the decision boundary to the
other, generating enough consistency loss to optimize the
decision boundary. But, the perturbation can not cross the true
category boundary, because it may destroy the label of the
original sample. Therefore, how to generate strong, diverse,
and reasonable perturbations is critical for SSCC. The prior
knowledge of crowd counting can provide a solution to this
question. To this end, we first acquire the prior knowledge of
which perturbations the counting model is more vulnerable to,
and then use the prior knowledge to design the perturbations
for SSCC.

The perturbations to an image can be divided into seman-
tic perturbation (SP) and non-semantic perturbation (NSP).
SP refers to image transformations. Each changes a specific
semantic of an image. NSP aims to add incomprehensible
noises to the input image, such as random isotropic Gaussian
noises and adversarial noises. To study the robustness of a
counting model against various semantic and non-semantic
perturbations, motivated experiments were carried out. The
transformations of SP used in our experiments are described
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TABLE I
IMAGE TRANSFORMATION OPERATION AND MAGNITUDE SETTING. FOL-

LOWING [28], THE NUMBER OF TRANSFORMATIONS, N , IS RANDOMLY
CHOSEN FROM THE SET TO PERTURB EACH IMAGE AND STUDY

THE ROBUSTNESS OF THE COUNTING MODEL AGAINST SP

TABLE II
THE PERFORMANCE OF THE CSRNET ON THE TEST SET OF SHHA

UNDER DIFFERENT SEMANTIC TRANSFORMATIONS, AVERAGED OVER
FIVE RUNS. PL REFERS TO THE PERTURBATION LEVEL I.E., THE

NUMBER OF TRANSFORMATIONS TO EACH IMAGE. THE PIXELS
LARGER THAN 0 IN THE CROWD DENSITY MAP IS CON-

SIDERED TO BE THE FOREGROUND, WHILE THE REST IS
THE BACKGROUND

Fig. 2. Visualization of semantic perturbations for a crowd image, including
the images (a)-(d) of texture transformations and the images (e)-(f) of geomet-
ric transformations. (a)-(c) apply a single texture transformation each, whereas
(d) and (f) are the results obtained from texture combination and geometric
combination, respectively. The value in (·) is the number of transformations
within a combination. (e) shows the result of a 5×5 patch-shuffling. The lower
left of each image shows the ground truth and estimated count of individuals.

in Table I. The performance of the counting model under
different strengths of SP is evaluated on SHHA testing dataset,
and the results are reported in Table II. We can find that
the model performance undergoes a significant degradation
(e.g., MAE increases from 61.1 to 133.2), when strong texture
transformations (N = 7) are made to input images. For strong
geometric transformations, MAE increases slightly. Fig. 2
shows the images perturbed by SP (texture and geometric
transformations) and the counting results. The texture changes
in an image, particularly the hue of color, may cause the count-
ing model to fail. What is more, the counting model appears
to be more vulnerable to the texture perturbations in the head
region, as shown in Fig. 2 (b)-(c). The experimental results

TABLE III
THE ROBUSTNESS OF THE COUNTING MODEL UNDER ADVERSARIAL

ATTACKS (FGSM [43], PGD [45]). ϵ DENOTES THE PERTURBATION
BUDGETS. K IS THE STEP SIZES OF PGD

Fig. 3. Visualization of adversarial perturbation for a crowd image. The
FGSM [43] with ϵ = 2/255 is used to generate adversarial noise. The counting
model produces incorrect results for highly textured regions of the adversarial
image, such as plaid shirts and backpacks.

show counting model is sensitive to texture perturbations in the
crowd region and relatively robust to geometric perturbations.
Therefore, we should pay more attention to the strong texture
perturbation and the difference between the crowd and non-
crowd regions under SSL setting. To this end, we construct a
spatial texture transformation module in this study.

At the same time, we evaluate the robustness of count-
ing model against untargeted adversarial perturbations (e.g.,
FGSM [43], PGD [45]), which generate the imperceptible
noise of loss maximization through an optimization algorithm.
The experimental results are given in Table III and Fig. 3.
No surprise, the counting model is vulnerable to gradient-
based adversarial perturbations. Moreover, it can be seen from
Fig. 3 that the counting model overestimates in the highly
textured regions of the perturbed crowd image. It means that
the adversarial attack method may manipulate the texture
information of a crowd image, as discussed previously. Thus,
the non-semantic noises generated by adversarial attacks can
be used as a strong perturbation for SSCC. Unlike semantic
perturbation, adversarial perturbation is able to generate more
diverse perturbations for unlabeled data, because it is gener-
ated in a larger perturbation space.

Based on these understandings, a hybrid perturbation strat-
egy (HPS) is proposed to increase the diversity and strength of
perturbations on unlabeled data. It is composed of the semantic
perturbation of spatial texture transformation and the non-
semantic perturbation of adversarial perturbation. Generally,
SP is performed along the underlying data distribution of
the same class [21], while NSP perturbs the input image
along multiple directions. If only SP is used, some perturbed
samples will not cross the decision boundary, making them
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Fig. 4. The framework of the proposed semi-supervised crowd counting method. It mainly contains spatial texture transformation for semantics perturbation
(SP), adversarial perturbation for non-semantic perturbation (NSP), and cross-distribution normalization (CDN). SP adopts a spatial texture transformation to
perturb unlabeled images in the semantic space. NSP generates small yet efficient perturbations for unlabeled images via adversarial perturbations. CDN uses
different BN modules for labeled and unlabeled images, and introduces a bidirectional statistics update mechanism to achieve accurate population statistics.
CDA generates basic augmentations on all images, including random horizontal flipping, random cropping, and multi-scale training.

ineffective for model training, as shown in the first subplot in
Fig. 1 (b). When SP and NSP are used together, the probability
of samples crossing the decision boundary increases because
they are perturbed in multiple effective directions, as shown
in the second subplot in Fig. 1 (b).

IV. PROPOSED METHOD

A. Overview

Fig. 4 shows the overall framework of the proposed
semi-supervised crowd counting method. It is based on the
meanTeacher [16], including student network and teacher
network. They have the same model architecture, and the
teacher’s parameters are updated using the Exponential Mov-
ing Average (EMA) of the student’s parameters. Classical data
augmentations, including random flip and multi-scale, are first
used to generate weak perturbations on labeled and unlabeled
images. Then, the weakly-perturbed unlabeled images are
perturbed again by the proposed hybrid perturbation strategy
to obtain strongly-perturbed images. The weakly-perturbed
labeled images and the strongly-perturbed unlabeled images
are input to the student, but the teacher only uses the
weakly-perturbed unlabeled images as inputs, as done in [41].
This is because the predictions from the teacher are used
as pseudo-labels for the student, and the strong unlabeled
images may reduce the prediction quality of the teacher.
Moreover, following BYOL [46], a latent feature constraint
loss is used to avoid small consistency loss. It minimizes
the similarity loss between the teacher representation vt and
the student projection zs . A cross-distribution normalization
technique is introduced to handle the data distribution shift

between labeled and unlabeled images as well as the shift
between the student and the teacher. In the framework, the
student weights are updated with the supervised loss Ls ,
the latent feature constraint loss L f

u , and the consistency
loss of the model output Lo

u . In the teacher network, each
iteration the parameters (weights and BN statistics) are the
EMA of the student network [47]. To alleviate the mismatch
between the BN statistics and the learned student model,
the statistics computed in the teacher are transferred to the
student by the cross-distribution normalization module. During
inference, the student is used to predict the crowd density maps
of input images. Overall, the framework includes semantic
perturbation on spatial texture transformation, non-semantic
perturbation on adversarial perturbation and CDN modules.
The details are presented below.

B. Spatial Texture Transformation for Semantic Perturbation

As discussed previously, we find that counting model is
vulnerable to the texture perturbations of crowd area. There-
fore, a spatial texture transformation (STT) is designed here to
provide different perturbations on the different areas of input
images. STT consists of a spatial mask generation (SMG)
module and a hybrid texture transformation (HTT) module.
They are given below.

1) Spatial Mask Generation: SMG generates the spatial
mask of an unlabeled image. It is used to determine which
pixels belong to crowd or background area. First, the teacher
F t (·; θ t ) with parameters θ t is used to estimate the pseudo
density map Y t

u = F t (Xu; θ
t ) of an unlabeled image Xu .
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Fig. 5. Illustration of spatial mask generation. b and k are set to 0.01 and
40, respectively.

Fig. 6. Predicted density maps of the counting model for background images
with significant textural features. It can be seen that the counting model
incorrectly predicts a large number of people from the background images.

Then, Y t
u is converted to a binary mask B(Y t

u; b) using a binary
function B(·; b) with a threshold b. The mask is further refined
through a morphology operation C(·; k). Here, k denotes the
kernel size of the morphological operation. Formally, let SMG
be G(·; θ t , b, k), then the spatial mask Mu of Xu can be
written by

Mu = G(Xu; θ
t , b, k) = C(B(F t (Xu; θ

t ); b); k). (2)

where F(·; θ t ), B(·; b), C(·; k) are three functions to generate
the spatial mask, namely, pseudo density map estimation,
density map binarization, and binary mask post-processing,
as shown in Fig. 5. During training, the crowd area of an
image is obtained by setting the pixel values of the density map
above the threshold b to 1 and the rest pixels to 0. The crowd
area in the binary mask is small and reduces the influence of
perturbation on SSCC. Therefore, a dilation operation with an
appropriate kernel size k is performed to expand the size of
the crowd area.

2) Hybrid Texture Transformation: CNN is biased to tex-
ture and is prone to lose global information [48]. Thus, the
CNN-based crowd counting model is sensitive to the local
pattern changes in the important image area, as discussed in
Section III. This motivates us to consider texture transforma-
tion as a strong perturbation of the counting model. Hence,
HTT is designed here to perturb the crowd and background
areas of unlabeled images in the semantic space. Let the SP
function be Tsp : I × (P1

sp × · · · × P
q
sp) → I. I is the

image space and P i
sp is the feasible operation set of the i-th

perturbation. q denotes the number of perturbations. Given an
unlabeled image Xu , the semantic perturbation space �sp(Xu)

is defined by

�sp(Xu) = {Tsp(Xu; P i
φi ); P i

φi ∈ P
j

sp, j = 1, 2, · · · , q}, (3)

where P i
φi is a specific operation in P i

sp. φi is the hyper-
parameters of P i

sp. Generally, the perturbations of the crowd
foreground and background areas are different, and thus
�sp(Xu) is resolved to the foreground space �

f
sp(Xu) and the

background space �b
sp(Xu).

Foreground perturbation: �
f
sp(Xu) is determined based on

the prior knowledge in Sec. III. The perturbation in the image

foreground is used to change the texture information of crowd
heads while preserving their original labels on Xu . During
training, the crowd areas of unlabeled images are perturbed
online by T f

sp to obtain strong perturbations. First, T f
sp gen-

erates iteratively a set of random parameters 8 f
= {φi

}
q
i=1.

Then, a perturbation list {P i
φi }

q
i=1 is constructed. Finally, the

unlabeled image is perturbed by T f
sp = P1

φ1 ◦ P2
φ2 · · · ◦ Pq

φq .
To expand the semantic space, the order of each perturba-
tion in T f

sp is random. As mentioned previously, color-based
transformation can significantly destroy the image texture. So,
any perturbation that destroys the crowd texture can be used
to construct the semantic perturbation space of foreground
�

f
sp(Xu). For simplicity, two classical texture transformations,

color-jitter P1
sp and grayscale P2

sp, are used here to perturb the
texture in the head area while remaining most of the shape
information. P1

sp can be parameterized by brightness, contrast,
saturation and hue. They determine the feasible perturbation
space of color transformation. In our experiments, brightness,
contrast and saturation are allowed to vary from 0.5 to 1.5,
while hue is set in the range of −0.5 to 0.5. P2

sp converts a
color image to a gray image.

Background perturbation: It is necessary to strongly perturb
the background area of the crowd image since the texture trans-
formation in the foreground is inadequate to produce enough
consistency loss, particularly in a low-density crowd scene.
The background objects with significant textural features (e.g.,
trees, sand, and rocks, etc.) are frequently considered as crowd
heads in the counting model [49], because they look similar to
the high-density crowd areas, as shown in Fig. 6. Essentially,
the background objects, namely the hard samples, are strong
perturbations to the background. Therefore, a conflict-texture
transfer (CTT) module is designed to construct the background
perturbation �b

sp(Xu) = {T b
sp(Xu;φ

i );φi
∈ 8b

}. T b
sp adds

the texture information of hard samples into the background
via a mixed-based technique. CTT consists of a conflict
texture dictionary and a texture transfer technique, as shown
in Fig. 7. The conflict texture dictionary includes images
with significant texture characteristics that cause the counting
model to overestimate the number of people. The textures
in the image dictionary change the original information in
the background area and are known as conflicting textures.
The images in the dictionary include background and crowd
images. The background images similar to the crowd are
put into the dictionary, and they are collected by search
engines with keywords like trees, beans, density objects, etc.
The crowd images are collected from the high-density crowd
images of the crowd dataset we use. We note that only part
of texture influences the counting model, and crop the conflict
texture region from the collected images. Thus, a well-trained
CSRNet is used to predict the density map of the collected
images. Afterward, the high-density region of each image is
cropped with a fixed size 400× 400. The cropped images are
then saved to the texture dictionary S = {Si }

Nd
i=1. Nd is the

number of images in the dictionary.
The whole process of CTT is given in the following. First,

the background area of an image is obtained by Xb
u = Xu ⊙

(1 − Mu), where ⊙ denotes the Hadamard product. Then,
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Fig. 7. Illustration of the conflict-texture transfer module. The dictionary
contains the images which have the crowd texture pattern. The texture patterns
are migrated by CTT from the dictionary to the background of input images.

a texture image Si ∈ S is randomly selected. Since the size of
Si may not match Xb

u , the texture synthesis [50] is used here
to adjust Si . Finally, the texture pattern of Si is transferred to
Xb

u using texture transfer technique. Two ways are considered
to transfer the texture.

a) Pixel space mixup: Xb
u is mixed by Si with a weight

factor αp in the pixel space. It is set to 0.3 in our experiment.
The mixup image X̂b

u is thus expressed by

X̂b
u = αp · Si + (1− αp) · Xb

u . (4)

b) Color space mixup: Xb
u and Si are converted to the

HSV space. Since the counting model is sensitive to the hue
changes in color, they are mixed in the hue direction, and the
mixed image is again wrapped back to the RGB space. This
process can be formulated by

X̂b
u = H−1(αh · H(Xb

u)hue + (1− αh) · H(Si )hue), (5)

where H(·) is the mapping function from RGB to HSV, αh is
a hyperparameter to wrap the texture information of Si to Xb

u .
In the experiment, αh is set to 0.85.

It should be noted that the high-density crowd image Si is
only suitable for the color space mixup method, but the other
images of S are suitable for both.

Now, for an unlabeled image Xu , SMG is first used in STT
to generate its spatial crowd mask, then HTT is adopted to
perform strong texture transformations T f

sp(·) for the crowd
area and the conflict texture transfer T b

sp(·) for the background
area, respectively. The perturbed image X̂u is given by

X̂u = T f
sp(G(Xu)⊙ Xu)+ T b

sp((1− G(Xu))⊙ Xu). (6)

C. Adversarial Perturbation for Non-Semantic Perturbation

STT generates strong semantic perturbations to improve the
performance of SSCC. However, the perturbation diversity of
STT is not sufficient due to the limited prior knowledge and
the crowd distribution difference of images. We found in [51]
that the non-robust brittle features give rise to the vulnerability
of neural networks, and they are small yet highly predictive
non-semantic patterns. The finding is consistent with the prior
knowledge regarding non-semantic perturbation, as mentioned
in Section III. Therefore, we extend the perturbation space

from semantic to non-semantic space, and to generate diverse
perturbations and enough consistency loss on unlabeled data.
Formally, the NSP space of an input image X is defined by
�nsp(X, ε) := {X + δ; ∥δ∥p ≤ ε}. δ is a perturbation value,
whose p-norm is less than ε so that the perturbation does not
change the label of X . For any input X , its noise ρ(X) can
be obtained through adversarial perturbation (AP), given by

ρ(X) := arg max
δ;∥δ∥p≤ε

L(X + δ, Y, θ), (7)

where Y is the ground-truth target of X , θ is the model
parameters. Thus, the perturbed input is X̂ = X + ρ(X).

Eq. 7 is a constrained non-convex maximum optimization
problem. The project gradient descent (PGD) method [45] is
used to search the optimal perturbations of the problem under
the constrained condition. It iterates in the rising direction of
gradients and projects the adversarial sample into a feasible
set, and yields

X̂ k+1
= f�nsp(X,ε)(X̂ k

+ αs · sign(▽XL(X̂ k, Y, θ))), (8)

where f�nsp(X,ε) projects the perturbation sample X k
p, obtained

in the k-th iteration, to the ε-ball centered on input image X
with the L∞ distance metric. αs is the perturbation coefficient
of each iteration. However, under the SSL setting, the ground
truth Y is unavailable, and thus it is replaced by the pseudo
target F(X; θ t ). Define Tnsp to be non-semantic perturbation
function, for each unlabeled image Xu , its non-semantic
perturbation Tnsp(Xu) is computed by

X̂ k+1
u = X̂ k

u + αs · sign(▽Xu∥F(X̂ k
u; θ

s)− F(Xu; θ
t )∥22),

(9)

X̂ k+1
u = arg min

x∈�nsp(Xu ,ε)

∥x − X̂ k+1
u ∥∞. (10)

The details of NSP are summarized in Algorithm 1. In our
experiment, the number of PGD iterations K is set to 5, and
the adversarial perturbation is constrained into the ε-ball of
norm L∞ defined by Eq. (10). Here, the negative gradient of
loss L with respect to X is computed by backpropagation, and
the BN statistics updating is disabled during non-semantic per-
turbation. Since each sample needs to perform K forward and
backward operations, we use the Free-AT training strategy [52]
to reduce the computational cost of adversarial perturbation.

D. Cross-Distribution Normalization (CDN)

The BN layer of counting model normalizes each channel of
input features to be zero-mean and unitary variance, as shown
in Fig. 8 (a). Its cross-sample dependency property [53]
requires that the samples in a batch have same distribution
for accurate statistics. However, in SSL, strong perturbation
may change the distribution of unlabeled data, resulting in a
distribution shift between labeled and unlabeled data within a
batch, as shown in Fig. 9. That is to say, there has distribution
shift between training and testing sets. In [54], [55], and [56],
BN modules are designed in terms of data distributions, and
the main BN is used for each layer during inference, as shown
in Fig. 8 (b). These methods only consider the differences in
data distribution in a single network, and obtain a sub-optimal
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Algorithm 1 Non-Semantic Perturbation

Fig. 8. Comparison of different normalization methods. (a) Standard BN
assumes that samples within a mini-batch come from a similar distribution.
(b) Domain-specific BN (DSBN) uses different BN modules for different
distributions. (c) Cross-distribution normalization uses a bidirectional statistics
update mechanism to increase the accuracy of population statistics.

performance in the teacher-student framework due to train-test
inconsistency. To this end, the cross-distribution normalization
technique is introduced to stabilize model training in the
teacher-student framework. Different BN modules are used for
weakly and strongly perturbed data, and a bidirectional statis-
tics update mechanism is used to match the BN parameters
with the model weights across the two networks, as shown in
Fig. 8 (c).

In the student network, its input batch includes the
weakly-perturbed labeled data Xw

l and the strongly-perturbed
unlabeled data X s

u . Each of its normalization layers con-
sists of two parallel BN modules Ns1(·; µ̃s1, σ̃

2
s1, γs1, βs1)

and Ns2(·; µ̃s2, σ̃
2
s2, γs2, βs2). µ̃∗, σ̃

2
∗ and γ∗, β∗ denote the

population statistics (mean and variance) of the whole training

Fig. 9. Comparison of BN statistics distributions for weakly-perturbed label
data and strongly-perturbed unlabeled data.

set, as well as the scaling and shifting parameters of the affine
transform. During training, the two BN modules normalize the
features of Xw

l and X s
u with batch-wise statistics, respectively.

In the teacher network, each normalization layer only has
a BN module Nt (·; µ̃t , σ̃

2
t , γt , βt ), since the teacher only

receives the weakly-perturbed unlabeled data Xw
u . When the

teacher parameters are updated, the statistics of Nt are updated
simultaneously by

µ̃t ← αemaµ̃t + (1− αema)µ̃s1, (11)

σ̃ 2
t ← αemaσ̃

2
t + (1− αema)σ̃

2
s1, (12)

where µ̃s1 and σ̃ 2
s1 are the student population statistics mixture

of labeled and unlabeled data. Due to the domain gap between
the student and teacher training data, µ̃t , σ̃

2
t are not suitable

for the teacher. Hence, Nt uses the batch-wise statistics µt , σ
2
t

to normalize the inputs in the pseudo-label prediction process.
Each iteration µ̃t , σ̃

2
t are updated by the EMA of µt , σ

2
t , and

are integrated into Ns1. The statistics of Ns1 is updated by the
batch-wise statistics of Ns2, and yields

µ̃s1 ← α1µ̃s1 + α2µ̃t + α3µs2, (13)

σ̃ 2
s1 ← α1σ̃

2
s1 + α2σ̃

2
t + α3σ

2
s2, (14)

where µs2 and σ 2
s2 denote the batch-wise statistics in Ns2. Ns1

is used to normalize the input features of the student during
inference. α1, α2, α3 are the non-negative trade-off weights,
and they are set respectively to 0.5, 0.3, 0.2 in our experiment.

E. Optimization Objective

The optimization objective is to minimize the weighted
sum of the supervised loss Ls on labeled image Dl and the
consistency loss Lu on unlabeled image Du . Ls is computed
by the Euclidean distance between the predicted and ground-
truth density maps by

Ls =

Nl∑
i=1

∥∥∥F(X i
l ; θ

s)− Y i
l

∥∥∥2

2
. (15)

Lu is calculated by the prediction difference between teacher
and student under the different perturbations of the same
unlabeled data, at the output and feature levels, namely, Lo

u
and L f

u . They are

Lo
u =

Nu∑
j=1

∥∥∥F(Ts(X j
u); θ s)− F(Tw(X j

u); θ t )

∥∥∥2

2
, (16)
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TABLE IV

THE DETAILS OF SHANGHAITECH [2], UCF-QNRF [58], JHU-CROWD++ [59], NWPU-CROWD [49]. THE TRAINING SET OF EACH DATASET IS
DIVIDED INTO LABELED SET Dl AND UNLABELED SET Du

L f
u =

Nu∑
j=1

∥∥∥∥∥ v
j
t

∥v
j
t ∥2
−

z j
s

∥z j
s ∥2

∥∥∥∥∥
2

, (17)

where Ts = Tsp ◦ Tnsp is a strong perturbation. Tw is a
weak perturbation, generated by the CDA module. θ t is the
teacher weights, which are the EMA of student weights θ s .
v

j
t is the encoder output of the teacher. z j

s represents the
projector output of the student. The projector includes two
1 × 1 convolution layers with channels 256 and 512. L f

u is
used to prevent from training collapse [57].

Consequently, the total loss Ltotal of the counting model
can be given by

Ltotal = λ1Ls + λ2Lo
u + λ3L f

u , (18)

where λ1, λ2, λ3 are the trade-off weights, and set to 1.0, 0.2,
0.2 in our experiments.

V. EXPERIMENTS

To validate the proposed semi-supervised method, extensive
experiments have been carried out on mainstream datasets,
namely, ShanghaiTech [2], UCF-QNRF [58], JHU-Crowd++
[59], and NWPU-Crowd [49]. The experimental results are
analyzed and compared with the other SSL-based crowd count-
ing methods. Ablation studies are performed on ShanghaiTech
Part A dataset to demonstrate the performance of the proposed
components.

A. Implementation Details

To study SSL with limited labeled data, a strong counting
baseline (SCB) is designed based on CSRNet [3]. It adopts the
first thirteen layers of VGG16-BN as backbone. As done in [8],
all images are augmented by the random horizontal flipping
with a probability of 0.5, the multi-scale training with a scale
factor ranging from 0.8 to 1.2, and the random cropping with
a fixed size of 400 × 400. The above data augmentations
are used by the CDA module to generate weakly perturbed
data. To further obtain strongly perturbed data, the hybrid
perturbation strategy proposed above is used to generate the
SP and NSP perturbations. In SP, we set the parameters b, k
of SMG to 0.01 and 40, and use the ColorJitter function
in Pytorch to implement the texture transformation of the
crowd area, but randomly change the order of the operations
in ColorJitter. The conflict-texture dictionary is obtained in
advance before the SSL training. It uses 20 background texture
images obtained from the Internet and half of the crowd
images in Du , namely, Nd = 20+ 0.5 ∗ |Du |. In NSP, we set

ε = 0.01, αs = 0.005, K = 5 to balance perturbation strength
and computation cost. The Adam optimizer with a weight
decay of 1e-4 is used to train the proposed framework. The
learning rate is initially set to 1e-4, which is decayed by a
factor of 0.995 every epoch. The size of mini-batch is set to
be 12, including 6 labeled images and 6 unlabeled images.
A factor αema = 0.99 is used to update the teacher weights θ t

with the EMA of student weights θ s . Following [3], the fixed
Gaussian kernel with a size of 15× 15 is used to generate the
ground-truth density map. MAE and RMSE are used here to
evaluate the performance of the counting model. We first train
the model 20 epochs with Ls to obtain a good teacher, and
then train the model 500 epochs with Ltotal . Experiments are
performed with PyTorch and two RTX-2080Ti GPUs.

B. Datasets

The mainstream datasets widely used are given in Table IV.
ShanghaiTech [2] includes Part A and Part B, called here
with SHHA and SHHB. The images of SHHA are crawled
from the Internet, having different views and densities. The
images of SHHB are captured on the street with a fixed
camera, having limited diversity. Hence, it is more difficult
to accurately count the crowd on SHHA. UCF-QNRF [58]
contains 1535 images of congested crowd scenes, with a
total of 1,215,642 people. JHU-Crowd++ [59] comprises
4372 unconstrained crowd images with image-level and head-
level annotations. These images are divided into training,
validation and testing sets. NWPU-Crowd [49] is a congested
crowd dataset with counting and localization annotation. Its
images have an average resolution of 2191 × 3209. UCF-
QNRF, JHU-Crowd++ and NWPU-Crowd are high-resolution
images. Herein, the images with more than 1600 pixels in
the lengthwise direction are downscaled to 1600 pixels, while
maintaining the same aspect ratio. Since SHHA, SHHB, and
UCF-QNRF have no validation sets, 10% of their training data
is used as the validation set. The resultant training set of the
four datasets is further divided into 10% labeled data and 90%
unlabeled data, following the default partition protocol.

C. Evaluation and Comparison

The semi-supervised crowd counting framework is estab-
lished with PyTorch.1 It integrates the SSL methods into
the crowd counting, such as native self-training (N-ST) [40],
MT [16], VAT [17], UDA [18]. They are based on SCB and
use the same configuration, including batch size, common

1https://github.com/KingMV/SSCC-framework
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TABLE V

COMPARISON STUDY OF THE LEADING SSCC METHODS ON VARIOUS CROWD COUNT DATASETS. _† DENOTES THE REPRODUCTION RESULTS IN
OUR EXPERIMENT. RED NUMBERS SHOW THE PERFORMANCE OF RANKING FIRST AND BLUE FOR RANKING SECOND UNDER 10% PARTITION

PROTOCOL. FS AND SS REPRESENT FULLY-SUPERVISED AND SEMI-SUPERVISED LEARNING

data augmentation and learning rate, etc. Experimental results
are given in Table V. Except for the N-ST, MT, UDA, and
VAT methods, the results of the other methods come from the
related papers. NWPU-Crowd is evaluated on its validation set
because the test set is not available. We provide the results of
Label-only which trains the SCB baseline with 10% labeled
data, and F-SCB which uses 100% labeled data. Their results
represent the lower and upper bounds of the performance of
the baseline under the SSL setting. Overall, it can be seen
that HPS is better than the leading semi-supervised crowd
counting methods, such as L2R [10], IRAST [8], GP [11],
SUA [9] and MTCP [13] under the same partition protocol,
and significantly outperforms the classical SSL methods of
MT [16], UDA [18], VAT [17], N-ST [40] on all the four
datasets. The metrics of these four classical methods are a little
bit better than Label-only. This suggests that the perturbations
used by the SSL methods are not suitable for crowd counting,
since they are specifically designed for image classification.
Hence, the prior knowledge of crowd counting is used in
the hybrid perturbation strategy to produce strong and diverse
perturbations on crowd images, and to improve SSCC.

With the 10% partition protocol, HPS surpasses respectively
latest MTCP by 9.1% and 24.8% on SHHA and SHHB, in the
metric of MAE. Moreover, its performance slightly improves
10.4%, 4.2%, and 4.6% over the second-best method on
complex datasets like UCF-QNRF, NWPU-Crowd, and JHU-
Crowd++. In SUA [9], 40% and 10% of the training data
are used respectively as labeled training data and validation
data. Therefore, we conduct experiments with 40% labeled
samples from the four datasets. The results in the bottom
of Table V show that HPS outperforms SUA and MTCP in
the metrics of MAE and RMSE on all datasets (except JHU-
Crowd++). The framework of SUA is similar to HPS. That is,
they are both based on a teacher-student framework, but their
motivations are different. SUA utilizes an uncertainty-aware
map to reduce the pseudo-label noise from unlabeled data,

TABLE VI
ABLATION STUDY OF COMPONENTS AND LOSSES ON SHHA AND SHHB

DATASET. THE LABELED AND UNLABELED DATA ARE 10% AND 90%
OF TRAIN DATA, RESPECTIVELY

to improve the quality of pseudo-label generated by surrogate
tasks. Unlike this, HPS concentrated on the strong perturbation
design for unlabeled data so that the counting model can learn
generalized features. As a whole, the performance of HPS is
better than the other semi-supervised counting models when
we set aside 40% and 10% of the training images as labeled
datasets. It is even close to the performance of the fully-
supervised counting models. Therefore, suitable perturbations
are important in SSCC when a consistency-based SSL frame-
work is used. Fig. 10 gives the visualization results of the
counting methods. It can be seen that HPS is superior in the
high-density and background areas, illustrated by red boxes.

D. Ablation Study

The following aspects of the proposed method are analyzed
on ShanghaiTech test sets through ablation studies.

1) Analysis of Modules and Losses: HPS comprises the
modules of STT, AP and CDN, and uses three losses (Ls , Lo

u ,
L f

u ). Here, STT and AP are used to implement semantic and
non-semantic perturbations, respectively. We carry out ablation
studies to evaluate the proposed modules. Since STT and AP
are related to Lo

u and L f
u , we discuss them together. The results
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Fig. 10. The estimated density maps of different crowd counting methods. The first column gives the original images. The second column provides the
ground-truth density maps. The rest columns show the estimated results by SCB, Label-only, MT [16], VAT [17] and HPS. The predicted counting results
are given at the left-bottom corner of the images. Red boxes highlight the difference of estimated density maps. The quality of the original image in the third
row is poor, while HPS still achieves better performance.

are given in Table VI. First, we train CSRNet with Ls on
10% labeled images of the training dataset. The performance
of Label-only is poor due to the limited labeled data. Then,
we add the unlabeled data and train the model with Lo

u +Ls ,
The metrics of MT [16] are slightly better than Label-only,
but still unsatisfactory. When we put CDN to MT, the MAE
metric of BL† varies from 91.5 to 85.6, on the SHHA test set.
It means that CDN is useful to improve model optimization,
and it is used in the following experiments. Then, STT is put
to BL†

+STT to generate semantic perturbations for unlabeled
data, and we find it outperforms BL† in MAE by 11.9%.
When we put only adversarial perturbation (AP) to BL†, the
MAE of BL†

+AP is improved by 6.2%. Although the STT
and AP modules can both improve the performance of BL†,
the former improves more than the latter. This indicates that
the semantic perturbations designed with the prior knowledge
of crowd counting are necessary for SSCC. So, we put STT
and AP to unlabeled data, the MAE and RMSE metrics of
BL†
+STT+AP are 73.9 and 123.5 on the SHHA test set.

It shows that they are complementary and their combination
generates strong and diverse perturbations to unlabeled data.
If L f

u is discarded during model training, the performance of
BL†
+STT+AP decreases. It means that L f

u is useful for con-
sistency regularization and training collapse avoidance. With
STT, AP and CDN and all the three losses, BL†

+STT+AP
increases respectively 13.7% and 18.9% in the MAE and
RMSE metrics, compared with BL†, and outperforms the
leading SSCC methods.

2) Analysis of Semantic Perturbation: Table VII summa-
rized the results of different perturbations in the foreground
and background areas. When we perform the texture pertur-
bation on the foreground area of unlabeled images, the MAE
metric decreases by nearly 8.4%. However, the performance
of the counting model cannot get a big improvement when
the whole image is perturbed with the same texture transfor-
mation. We also find that the counting model almost has no
performance improvement when only the background region is
perturbed. It means that the right texture transformation in the
background area is needed to improve the SSCC performance.

TABLE VII
COUNTING PERFORMANCE ON SHHA TEST SET WITH DIFFERENT PER-

TURBATION REGIONS AND DIFFERENT PERTURBATION STRATEGIES.
THE FIRST ROW IS THE BASELINE PERFORMANCE. F AND B

REPRESENT FOREGROUND AND BACKGROUND RECEPTIVELY.
TP MEANS TEXTURE PERTURBATION INCLUDING COLOR

JITTER AND GRAYSCALE

Fig. 11. The spatial masks and the corresponding perturbation images. Top:
the spatial masks with dilated kernel sizes of 1×1, 40×40, 80×80. Bottom:
the visualization of perturbation images.

TABLE VIII
THE COUNTING PERFORMANCE ON SHHA TEST SET WITH DIFFERENT

CROWD SPATIAL MASK SIZES. ∗ × ∗ REPRESENTS THE SIZE OF THE
DILATED KERNEL

In Table VII, it can be seen that the model performance
improves significantly when we use CTT for the background
area. If the background of images is randomly mixed within a
mini-batch [25], the model performance gets further improved,
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Fig. 12. Comparison of BN statistics distributions under different normal-
ization settings. (a) and (b) represent mean and variance distributions of BN
layers in a trained model, respectively. F-BN(100%L) denotes the statistics
with 100% labeled data, which approximates the population statistics of the
training set. DSBN(10%L) [56] is the statistics of main BN with 10% labeled
data. BN(10%L+90%U) and CDN (10%L+90%U) represent the statistics
with a mixture of 10% labeled data and 90% unlabeled data, respectively.

Fig. 13. Results Comparison on SHHA test set for different non-semantic
perturbations. (a) The performances of Baseline(MT-BL), VAT, FGSM and
PGD. (b) the MAE metric with different perturbation sizes.

but lower than CTT. It shows that the hard samples can
produce stronger perturbation with conflict textures. With the
proposed hybrid texture transformation, the counting perfor-
mance is significantly improved by 11.0%. Now, we discuss
the effect of the spatial mask on the performance of SSCC.
Fig. 11 shows the spatial masks and their corresponding
perturbation images. The crowd foreground area is changed
with the dilated kernel size. Table VIII reports the results of
BL†
+STT with the different spatial masks. It can be seen

that the model performance drops when the size of the crowd
foreground mask is too small or too big. The metrics of
BL†
+STT are almost the same as BL† when the size of the

mask is small. The reasons are (i) the perturbation strength in
the crowd area decreases, (ii) CTT adds high-density crowd
images from the texture dictionary into the misclassified crowd
area and thus destroys the original semantic labels of the crowd
area. On the other side, the model performance gradually
improves with the dilation size, and we get the best results
with a dilated kernel size of 40×40. However, the performance
drops afterward. This is because part of the background area
is considered as the crowd area, and the perturbation strength
decreases in the background area.

3) Analysis of Non-Semantic Perturbation: Adversarial
perturbation is used to achieve NSP. Different adversarial
perturbations are studied here, including FGSM [43] and
PGD [45]. Specifically, we try two hyper-parameter settings:
(a) the maximum perturbation size is within the 0.01-ball,
and the number of attack iterations and step sizes is set to

TABLE IX
COMPARISON OF PERFORMANCE FOR SSCC UNDER DIFFERENT PERTUR-

BATION STRENGTHS ON SHHA TEST SET. None MEANS THAT NO
STRONG PERTURBATION IS USED

K = 5 and αs = 0.005 in PGD, (b) the perturbation size varies
from 0.001 to 1, and the attack iterations K = 1, 3, 5, 7 in
PGD. The results in Fig. 13 show that the performance of the
counting model is improved with stronger adversarial pertur-
bation in the allowed perturbation space. However, when the
perturbation size exceeds the boundary of non-semantic, the
performance gradually drops because too strong perturbation
may lead to the distribution inconsistency between training
and testing data.

4) Analysis of Perturbation Strength: Table IX shows the
performance of SSCC with different perturbation strengths
on SHHA. Since the predictions of the teacher are used as
pseudo targets, its input should be weakly perturbed images.
Following [23], we change the perturbation strength of the
input images in the student, by adjusting the parameters of SP
and NSP. Here, four levels of perturbation are used. We can
see that the performance of SSCC improves with the increase
of the perturbation strength. However, if the perturbation is
too strong, the performance decreases instead. This is because
the stronger perturbation destroys the counting label of image.
Consequently, it is not advisable to align a strongly perturbed
image of semantic distortion with a weakly perturbed one.

5) Analysis of Cross-Distribution Normalization: The
crowd counting performance under the different normalization
settings of BN [29], DSBN [56], and CDN, is summarized in
Table X. When standard BN is used in the MT framework, its
counting performance is poor. With the STT module added,
MT+STT+BN only decreased MAE by 5.5%, due to no
BN statistics update and the distribution shift between weakly
and strongly perturbed data. In MT+STT+BN†, the BN
statistics of the teacher are the EMA of the student’s BN
statistics and are needed to match the weights of the teacher,
as done in [47], but it is unable to converge. We argue
that it is caused by the inconsistent distribution of training
and testing images. Domain-specific BN (DSBN) [56] uses
different BN modules for different distributions. As a result,
MT+STT+DSBN decreases MAE by 4.5% with respect to
MT+STT+BN. DSBN does not update the BN statistics in
the teacher-student architecture, too. Instead, a bidirectional
statistics update mechanism is used in CDN to update the
BN parameters with the counting model weights across the
teacher and student networks, and thus the performance of
MT+STT+CDN is improved by 16.3%, 11.5% and 7.4%
over the first three normalization settings. Fig. 12 shows
the BN statistics distributions of the different normalization
settings. We can see that the BN statistics distribution of CDN
is closer to F-BN(100%L) than others. This proves that CDN
can provide more accurate statistics.

6) Influence of the Labeled Images Proportion: To ana-
lyze the influence of the number of labeled images on the
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TABLE X
THE COUNTING PERFORMANCES OF THE DIFFERENT NORMALIZATION

METHODS ON SHHA TEST SET. BN† REPRESENTS THAT THE
TEACHER NETWORK USES POPULATION STATISTICS FROM THE

STUDENT NETWORK, INSTEAD OF BATCH-WISE STATISTICS

Fig. 14. Counting results on SHHA dataset with different modules and
different proportions of labeled images (1/10, 1/8, 1/4, 1/2, 3/4).

TABLE XI
THE ROBUSTNESS OF COUNTING MODELS AGAINST DIFFERENT ATTACKS

ON SHHA TEST SET. LABEL-ONLY USES 10% LABELED DATA TO
TRAIN THE COUNTING MODEL

performance of SSCC, we train the model with various pro-
portions of labeled images, 1

10 , 1
8 , 1

4 , 1
2 , 3

4 . The images are
randomly selected from the training set, while the rest labels
are removed and used as unlabeled images. Fig. 14 summa-
rizes the different models performance vs the proportion of
labeled images. It can be seen that HPS is superior over
other methods under the small number of labeled images.
With more labeled images added, HPS holds its superiority to
the baseline method, however, the performance gap becomes
smaller. In other words, the HPS performance can not be
improved unlimitedly with the labeled images number.

7) Analysis of Counting Model Robustness: To our knowl-
edge, there are few works about the robustness of semi-
supervised crowd counting. Here, this issue is studied on
SHHA with various attacks. The test dataset of SHHA is
initially attacked with three attack modes, namely, visual
augmentation, FGSM [43] and PGD [45]. For simplic-
ity, they are referred to as VA-SHHA, FGSM-SHHA and
PGD-SHHA. Table XI summarizes the performances of the
counting models. No surprise, the leading fully supervised
(CSRNet [3], CANNet [32]) and semi-supervised methods
(MT [16], VAT [17]) are vulnerable to these attacks. However,

HPS has better robustness against various attacks than the
above methods. The reasons are: 1) HPS makes use of seman-
tic and non-semantic perturbations, which generate diverse and
hard training samples for the model to learn more discrimi-
native features. 2) HPS is designed based on the robustness
analysis of counting models, and it trains the counting model
with the samples generated by the strong perturbations so that
the model robustness is improved.

VI. CONCLUSION

A consistency-based semi-supervised crowd counting
method is proposed with HPS to integrate the prior knowl-
edge of crowd counting in the semantic and non-semantic
spaces. HPS comprises three modules, namely, spatial tex-
ture transformation, non-semantic adversarial perturbation, and
cross-distribution normalization. The texture transformations
are used in semantic space to perturb the foreground area
in images, while a conflict-texture transfer technique is used
to augment the background area. Adversarial perturbation
is used to generate diverse and hard perturbations in non-
semantic space. Moreover, cross-distribution normalization is
introduced to address counting model optimization by the nor-
malization of each distribution sample in a mini-batch and the
bidirectional statistics update mechanism. The proposed SSCC
is validated on four mainstream datasets, and the experimental
results show it significantly improves counting performance.
In the future, we will employ other advanced SSL techniques
(e.g., pseudo-label denoising) to further improve the model
performance and extend HPS to other tasks.
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